Airway hyperresponsiveness induced by cationic proteins in vivo: site of action.
نویسندگان
چکیده
Major basic protein and other native cationic proteins increase airway hyperresponsiveness when administered to the luminal surface of the airways in vitro. To determine whether the same applies in vivo, we assessed airway responsiveness in rats challenged with both aerosolized and intravenously infused methacholine. We partitioned total lung resistance into its airway and tissue components using the alveolar capsule technique. Neither poly-l-lysine nor major basic protein altered baseline mechanics or its dependence on positive end-expiratory pressures ranging from 1 to 13 cmH(2)O. When methacholine was administered to the lungs as an aerosol, both cationic proteins increased responsiveness as measured by airway resistance, tissue resistance, and tissue elastance. However, responsiveness of all three parameters was unchanged when the methacholine was infused. Together, these findings suggest that cationic proteins alter airway responsiveness in vivo by an effect that is apparently limited to the bronchial epithelium.
منابع مشابه
Cationic protein-induced sensory nerve activation: role of substance P in airway hyperresponsiveness and plasma protein extravasation.
We have previously reported that human eosinophil granule major basic protein and synthetic cationic proteins such as poly-L-arginine and poly-L-lysine, can increase airway responsiveness in vivo. In the present study, we have investigated whether activation of sensory C-fibers is important in this phenomenon. Dose-response curves to methacholine were constructed before and 1 h after intratrach...
متن کاملHuman eosinophil-granule major basic protein and synthetic polycations induce airway hyperresponsiveness in vivo dependent on bradykinin generation.
In the current series of experiments we investigated the role of bradykinin in airway hyperresponsiveness induced by human eosinophil-granule major basic protein (MBP). Bronchoalveolar lavage was performed after intratracheal instillation of MBP or poly-L-lysine in anesthetized, intubated rats, and levels of immunoreactive kinins and kallikrein-like activity were determined. Both MBP and poly-L...
متن کاملTanshinone IIA attenuates ovalbumin-induced airway inflammation and hyperresponsiveness in a murine model of asthma
Objective(s): Tanshinone IIA (T. IIA), one of the most pharmacologically active components extracted from Salviae miltiorrhiza, has anti-inflammatory and antioxidant features. The aim of the present study is to investigate the benefit of T. IIA on asthma using a murine model of asthma induced by ovalbumin (OVA). Materials and Methods: Male BALB/c mice were used in the present study. The mice we...
متن کاملEffects of human eosinophil granule-derived cationic proteins on C-fiber afferents in the rat lung.
Experiments were performed to test the hypothesis that human eosinophil granule-derived cationic proteins stimulate vagal C-fiber afferents in the lungs and elicit pulmonary chemoreflex responses in anesthetized Sprague-Dawley rats. Intratracheal instillation of eosinophil cationic protein (ECP; 1-2 mg/ml, 0.1 ml) consistently induced an irregular breathing pattern, characterized by tachypnea (...
متن کاملAttenuation of antigen-induced airway hyperresponsiveness in CGRP-deficient mice.
Bronchial hyperresponsiveness and eosinophilia are major characteristics of asthma. Calcitonin gene-related peptide (CGRP) is a neuropeptide that has various biological actions. In the present study, we questioned whether CGRP might have pathophysiological roles in airway hyperresponsiveness and eosinophilia in asthma. To determine the exact roles of endogenous CGRP in vivo, we chose to study a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Lung cellular and molecular physiology
دوره 289 3 شماره
صفحات -
تاریخ انتشار 2005